Optimization of Multi-Intelligent Robot Control System Based on Wireless Communication Network

Author:

Li Bin1ORCID

Affiliation:

1. College of Naval Architecture and Marine Engineering, Guangzhou Maritime University, Guangzhou 510725, China

Abstract

The robot is a very complex multi-input multioutput nonlinear system. It has time-varying, strong coupling, and nonlinear dynamic characteristics, and its control is very complicated. Due to the inaccuracy of measurement and modeling, coupled with changes in the load and the influence of external disturbances, it is actually impossible to obtain an accurate and complete dynamic model of the robot. We must face the existence of various uncertain factors of the robot. This paper analyzes the real-time communication protocol in the wireless network control system and confirms that the main way to improve the real-time performance of the wireless network control system is to implement the real-time media access control (MAC) protocol. This paper studies robots from the perspective of control and mainly discusses how to use artificial immune algorithms to design robust nonlinear proportion integral derivative (PID) controllers. A nonlinear PID controller is used to replace the classic PID controller. The nonlinear link can be adjusted with the change of the error, so as to achieve the purpose of improving the adaptability and robustness to obtain satisfactory tracking performance. We carried out selective compliance assembly robot arm (SCARA) robot remote control experiment, dual robot following experiment, SCARA and ABB robot collisionless motion planning experiment, and multirobot intelligent collaborative assembly experiment. The experimental results show that the C/S mode remote control system has good practicability and can complete remote tasks; the P2P communication system has good information transmission effects and can realize real-time information sharing between robots; the collision-free motion planning algorithm enables the dual robots to complete obstacle avoidance tasks well in complex operating environments; the functional modules of the system can closely cooperate to complete the tasks in coordination, and the multirobot system has a certain degree of intelligence.

Funder

2021 Scientific Research Project of Education Department of Guangdong Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3