Music Online Education Reform and Wireless Network Optimization Using Artificial Intelligence Piano Teaching

Author:

Guo Rui1ORCID,Ding Jingna1,Zang Weihua2

Affiliation:

1. College of Music, Handan University, Handan, Hebei, China

2. Electronic Information Engineering Experiment and Training Center, Handan University, Handan, Hebei, China

Abstract

The purpose is to realize the intelligent reform of piano online teaching and the intelligent optimization of wireless networks. Empirical research is realized with quantitative research and algorithm simulation as the starting point. First, regression fitting algorithm and Relief F weight algorithm are adopted to extract the effectiveness of each characteristic variable. Next, under the guidance of metric learning theory, K-Nearest Neighbors (KNN) in Projected Feature Space (P-KNN) algorithm is proposed to complete the hierarchical recognition of piano teaching influence features. Metric Learning With Support Vector Machine (ML-SVM) classification algorithm is employed to identify the feature performance affecting piano teaching. Finally, the performance of P-KNN algorithm and ML-SVM algorithm is compared with KNN algorithm and Information-Theoretic-Metric-Learning (ITML) algorithm. It is concluded that the recognition accuracies of P-KNN and ML-SVM are 82.78% and 83.97%, respectively. Based on the quantitative research on the characteristics affecting piano teaching, artificial intelligence and wireless network optimization are combined to explore the implementation path of intelligent technology in piano teaching reform, reflect the use value of modern science and technology in piano teaching, and innovate the process of music online education reform of piano teaching.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference25 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3