Extracorporeal Shock Wave Rebuilt Subchondral Bone In Vivo and Activated Wnt5a/Ca2+ Signaling In Vitro

Author:

Yu Lai12ORCID,Liu Shuitao34,Zhao Zhe4,Xia Lin2,Zhang Haochong4,Lou Jing4,Yang Jun4,Xing Gengmei2,Xing Gengyan4ORCID

Affiliation:

1. Xiamen Chang Gung Hospital, Xiamen, Fujian, China

2. Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

3. The Fourth Military Medical University, Xi'an, Shaanxi, China

4. General Hospital of Chinese People’s Army Police Force, Beijing, China

Abstract

Background. This study aimed to identify the optimal extracorporeal shock wave (ESW) intensity and to investigate its effect on subchondral bone rebuilt in vivo and Wnt5a/Ca2+ signaling in vitro using an osteoarthritis (OA) rat model and bone marrow mesenchymal stem cells (BMMSCs), respectively. Methods. OA rats treated with (OA + ESW group) or without (OA group) ESW (n=12/group) were compared with healthy controls (control group, n=12). Gait patterns and subchondral trabecular bone changes were measured. Western blot and quantitative real-time polymerase chain reaction detected protein expression and gene transcription, respectively. Results. The gait disturbances of OA + ESW group were significantly improved compared with the OA group at 6th and 8th weeks. The micro-CT analysis indicated that the BMD, BSV/BV, BV/TV, Tr.S, and Tr.Th are significantly different between OA group and OA + ESW group. Expression of Wnt5a was increased rapidly after ESW treatment at 0.6 bar and peaked after 30 min. Conclusions. ESW were positive for bone remodeling in joint tibial condyle subchondral bone of OA rat. ESW prevented histological changes in OA and prevented gait disturbance associated with OA progression. Optimal intensity of ESW induced changes in BMMSCs via activation of the Wnt5a/Ca2+ signaling pathway.

Funder

National Basic Research Program of China (973 Program)

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3