Diallyl Trisulfide Suppresses Oxidative Stress-Induced Activation of Hepatic Stellate Cells through Production of Hydrogen Sulfide

Author:

Zhang Feng123,Jin Huanhuan1,Wu Li123,Shao Jiangjuan23,Zhu Xiaojing1,Chen Anping4,Zheng Shizhong123ORCID

Affiliation:

1. Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China

2. Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China

3. State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China

4. Department of Pathology, School of Medicine, Saint Louis University, Saint Louis, MO 63104, USA

Abstract

Accumulating data reveal that garlic has beneficial effects against chronic liver disease. We previously reported that diallyl trisulfide (DATS), the primary organosulfur compound in garlic, reduced fibrosis and attenuated oxidative stress in rat fibrotic liver. The present study was aimed at elucidating the underlying mechanisms. The primary rat hepatic stellate cells (HSCs) were cultured and stimulated with hydrogen peroxide (H2O2) for inducing HSC activation under oxidative stress. We examined the effects of DATS on the profibrogenic properties and oxidative stress in H2O2-treated HSCs. The results showed that DATS suppressed and reduced fibrotic marker expression in HSCs. DATS arrested cell cycle at G2/M checkpoint associated with downregulating cyclin B1 and cyclin-dependent kinase 1, induced caspase-dependent apoptosis, and reduced migration in HSCs. Moreover, intracellular levels of reactive oxygen species and lipid peroxide were decreased by DATS, but intracellular levels of glutathione were increased in HSCs. Furthermore, DATS significantly elevated hydrogen sulfide (H2S) levels within HSCs, but iodoacetamide (IAM) reduced H2S levels and significantly abrogated DATS production of H2S within HSCs. IAM also abolished all the inhibitory effects of DATS on the profibrogenic properties and oxidative stress in HSCs. Altogether, we demonstrated an H2S-associated mechanism underlying DATS inhibition of profibrogenic properties and alleviation of oxidative stress in HSCs. Modulation of H2S production may represent a therapeutic remedy for liver fibrosis.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3