Development of an Equivalent Force Method and an Application in Simulating the Radiated Noise from an Operating Diesel Engine

Author:

Vlahopoulos Nickolas1,Kalish Yury2,Raveendra S.T.3

Affiliation:

1. Department of Naval Architecture and Marine Engineering, University of Michigan, 2600 Draper Road, 214 NA&ME Bldg., Ann Arbor, MI 48109–2145, USA

2. Detroit Diesel Corporation, 13400 Outer Drive, West, Detroit, MI 48239–4001, USA

3. Automated Analysis Corporation, 2805 S. Industrial, Suite 100, Ann Arbor, MI 48104–6767, USA

Abstract

In this paper a new methodology is presented for applying measured accelerations and forces as excitation on a structural finite element model in order to perform a forced frequency response analysis. The computed vibration constitutes the excitation for an acoustic boundary element analysis. The new developments presented in this paper are associated with: the equivalent force method that can prescribe the acceleration at certain parts of the structure; the integration within a single process of test data that define the excitation, with the vibration analysis, and the acoustic prediction; the utilization of the new technology in simulating the noise radiated from a running engine and determining the effects of design changes. Numerical results for noise radiated from a running engine are compared to test data for a baseline design. The effect of two structural design modifications on the radiated noise is computed, and conclusions are deduced.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correlation between Rail Vibration and Sound Radiation Using a Hammer Impact;IOP Conference Series: Materials Science and Engineering;2020-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3