A Novel Supplement Attenuates Oxidative Stress-Induced TDP-43-Related Pathogenesis in TDP-43-Expressed Cells

Author:

Yang Eun Jin1ORCID

Affiliation:

1. KM Medicine Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-Daero, Yuseong-Gu, Daejeon 305811, Republic of Korea

Abstract

Amyotrophic lateral sclerosis (ALS) is caused by selective the loss of spinal motor neurons by multifactorial pathological mechanisms and results in muscle atrophy. Incidence rates of ALS are increasing over time, but there are no effective treatments at present due to limitations on approved therapies (riluzole and edaravone). Therefore, this study investigated whether combined treatment with Bojungikgi-tang and riluzole could act synergistically in transactive response DNA-binding protein 43 (TDP-43) stress granule cells. To examine the effect of combined treatment on oxidative stress-induced cell death, the CCK8 assay was performed for the detection of cell viability. The expression of oxidative stress-induced proteins was determined by Western blot. Quantification of sodium arsenite-induced reactive oxygen species (ROS) was measured in TDP-43 stress granular cells using 2,7-diacetyl dichlorofluorescein diacetate. To investigate the effect of combined treatment on TDP-43 aggregation, immunofluorescence and immunoblotting were performed in TDP-43 stress granular cells. This combined treatment alleviated oxidative stress-induced cell death by increasing the expression levels of antioxidation proteins, such as heme oxygenase-1 and B cell lymphoma-2-associated X protein. Furthermore, it reduced oxidative stress-induced TDP-43 aggregates and lowered the levels of autophagy-related proteins, including p62, light chain 3b, and ATG8, in TDP-43-expressing cells. Our results suggest that this combined treatment could be helpful for autophagy regulation in other neurodegenerative diseases.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3