Magnetic Resonance Imaging Images under Deep Learning in the Identification of Tuberculosis and Pneumonia

Author:

Liu Yabin1ORCID,Wang Yimin1ORCID,Shu Ya1ORCID,Zhu Jing1ORCID

Affiliation:

1. Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China

Abstract

This work aimed to explore the application value of deep learning-based magnetic resonance imaging (MRI) images in the identification of tuberculosis and pneumonia, in order to provide a certain reference basis for clinical identification. In this study, 30 pulmonary tuberculosis patients and 27 pneumonia patients who were hospitalized were selected as the research objects, and they were divided into a pulmonary tuberculosis group and a pneumonia group. MRI examination based on noise reduction algorithms was used to observe and compare the signal-to-noise ratio (SNR) and carrier-to-noise ratio (CNR) of the images. In addition, the apparent diffusion coefficient (ADC) value for the diagnosis efficiency of lung parenchymal lesions was analyzed, and the best b value was selected. The results showed that the MRI image after denoising by the deep convolutional neural network (DCNN) algorithm was clearer, the edges of the lung tissue were regular, the inflammation signal was higher, and the SNR and CNR were better than before, which were 119.79 versus 83.43 and 12.59 versus 7.21, respectively. The accuracy of MRI based on a deep learning algorithm in the diagnosis of pulmonary tuberculosis and pneumonia was significantly improved (96.67% vs. 70%, 100% vs. 62.96%) ( P < 0.05 ). With the increase in b value, the CNR and SNR of MRI images all showed a downward trend ( P < 0.05 ). Therefore, it was found that the shadow of tuberculosis lesions under a specific sequence was higher than that of pneumonia in the process of identifying tuberculosis and pneumonia, which reflected the importance of deep learning MRI images in the differential diagnosis of tuberculosis and pneumonia, thereby providing reference basis for clinical follow-up diagnosis and treatment.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3