A Hybrid Model Method for Accurate Surface Deformation and Incision Based on FEM and PBD

Author:

Tan Shijie1ORCID,Zhou Hongjun2,Zheng Jinjin1ORCID

Affiliation:

1. Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230001, China

2. National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230001, China

Abstract

In some simulations like virtual surgery, an accurate surface deformation method is needed. Many deformation methods focus on the whole model swing and twist. Few methods focus on surface deformation. For the surface deformation method, two necessary characteristics are needed: the accuracy and real-time performance. Some traditional methods, such as position-based dynamics (PBD) and mass-spring method (MSM), focus more on the real-time performance. Others like the finite element method (FEM) focus more on the accuracy. To balance these two characteristics, we propose a hybrid mesh deformation method for accurate surface deformation based on FEM and PBD. Firstly, we construct a hybrid mesh, which is composed of a coarse volume mesh and a fine surface mesh. Secondly, we implement FEM on coarse volume mesh and PBD on fine surface mesh, and the deformation of fine surface mesh is constrained by the displacement of the coarse volume mesh. Thirdly, we introduced a small incision process for our proposed method. Finally, we implemented our method on a simple deformation simulation and a small incision simulation. The result shows an accurate surface deformation performance by implementing our method. The incision effect shows the compatibility of our proposed method. In conclusion, our proposed method acquires a better trade-off between accuracy and real-time performance.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3