Research on Distributed In-Vehicle Wireless Self-Organized Routing Protocol Distribution Mechanism

Author:

Cui Xinyu1ORCID,Chen Guifen1ORCID

Affiliation:

1. School of Electronic & Information Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China

Abstract

In recent years, the application of intelligent transportation systems has gradually made the transportation industry safe, efficient, and environmentally friendly and has led to a broader research prospect of vehicle wireless communication technology. Distributed vehicular self-organizing networks are mobile self-organizing networks in realistic traffic situations. Data interaction and transmission between nodes are achieved through the establishment of a vehicular self-organizing network. In this paper, a multipath routing protocol considering path stability and load balancing is proposed to address the shortcomings of existing distributed vehicular wireless self-organizing routing protocols. This protocol establishes three loop-free paths in the route discovery phase and uses the path stability parameter and load level parameter together to measure the total transmission cost. The one with the lowest total transmission cost is selected as the highest priority path for data transmission in the route selection phase, and the other two are used as alternate paths, and when the primary path breaks, the higher priority of the remaining path will continue to transmit data as the primary route. In this paper, to improve the content distribution performance of target vehicles in scenarios where communication blind zones exist between adjacent roadside units, an assisted download distribution mechanism for video-like large file content is designed in the V2V and V2I cooperative communication regime. That is, considering a two-way lane scenario, we use the same direction driving vehicles to build clusters, reverse driving vehicles to carry prefetched data, and build clusters to forward prefetched data to improve the data download volume of target vehicles in nonhot scenarios such as highways with the sparse deployment of roadside units, to meet the data volume download demand of in-vehicle users for large files and give guidance for efficient distribution of large file content in highway scenarios.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3