Monitoring Soil-Pile Stripping Damage at Different Temperatures via Piezoelectric Ceramic Sensors

Author:

Zhu Daopei1ORCID,Liu Xu1ORCID,Wang Zhangli2ORCID,Cai Xiaoli1ORCID

Affiliation:

1. School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 330013, China

2. Gansu Academy of Building Research (Group) Corporation Limited, Lanzhou 730070, China

Abstract

Large temperature differences exist between the winter and summer seasons in different regions of China. Such temperature differences, caused by seasonal changes, may affect the life cycles of piles. Under natural conditions, such as long-term operation under the ambient environment and loads, piles and the surrounding soil undergo peel damage. To study such peel damage between the pile and soil at different temperatures, we installed concrete test piles in soil and subjected them to different temperatures. A crack with a width of 2 cm, depth of 10 cm, and damage range of 90° was applied at the side of the piles. Furthermore, a horizontal impact load was applied near the top of the pile and a piezoelectric ceramic sensor was used to obtain the stress wave response signals. The experimental results reveal that with a decrease in the soil temperature, the amplitude and fluctuation range of the signals received by the piezoelectric sensor decreased. According to the experimental results, in the group with the greatest influence of temperature, keeping other conditions unchanged and setting different crack depths, the horizontal impact load can also be introduced to observe the frequency change. It can be observed that the larger the crack depth, the smaller the frequency. Finally, ABAQUS was used for simulations, whose results were found to be consistent with those of the experiments. This paper describes a method for determining the safety of soil and piles with peel damage at different temperatures, and it also provides a validation of the necessity of holding the rest constant.

Funder

Natural Science Foundation of Jiangxi Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3