Clustering Ensemble Technology Based on Granular Computing to Extract Cervical Cancer Predictors

Author:

Wang Ye-Cheng1,Tang Xu-Qing1ORCID,Xu Honglin2

Affiliation:

1. School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China

2. Wuxi Vocational Institute of Commerce, Wuxi 214122, Jiangsu, China

Abstract

Background. Cervical cancer is the most common gynecological malignancy, and its incidence has tended to be younger in recent years. Through the analysis of high-throughput expression data, the identification of key genes in cancer and healthy individuals as predictors of cervical cancer is of great significance for the early detection and early treatment of cervical cancer. Method. Granular computing is a concept and computing paradigm to deal with problems through information granulation, and the process of granulation can be realized by means of clustering. Based on this, this paper proposes an AB method to obtain representative elements in a multiattribute data system. First, the evaluation index FHEI of the clustering structure is introduced, and Algorithm 1 is designed to obtain the optimal clustering structure of each attribute of the data system and use it as the base cluster. Secondly, based on the clustering ensemble technology of granular computing, Algorithm 2 is designed with the help of the concept of information entropy. The algorithm takes the base cluster as the input to obtain the optimal ensemble clustering structure. Finally, using the nearest center principle, the representative elements of each class in the optimal ensemble clustering structure are obtained. Results. In this paper, the differentially expressed genes (DEGs) are screened out by using the gene expression data of cervical cancer, and the scores of the four interaction relationships among the DEGs are used as a multiattribute data system and input into the AB method. The five representative elements obtained are RTTN, SAMD10, ZNF207, WAC, and METTL14, which are the predictors of cervical cancer. The classification accuracy of these predictors is as high as 98.82%. This paper also conducts a comparative study between the AB method and other classical methods on six independent gene expression datasets. The results show that the number of predictors obtained by the AB method is small but has a high classification accuracy in the classification of patient samples.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3