Vibration and Trajectory Tracking Control of Engineering Mechanical Arm Based on Neural Network

Author:

Lei Xinjun12ORCID,Wu Yunxin134

Affiliation:

1. State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China

2. SANY Automobile Manufacturing Co.,Ltd, Changsha 410100, China

3. College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China

4. Light Alloy Research Institute, Central South University, Changsha 410083, China

Abstract

We offer a neural network-based control method to control the vibration of the engineering mechanical arm and the trajectory in order to solve the problem of large errors in tracking the path when the engineering mechanical arm is unstable and under the influence of the outside world. A mechanical arm network is used to perform tasks related to learning the unknown dynamic properties of a engineering mechanical arms keyboard without the need for prior learning. Given the dynamic equations of the engineering mechanical arm, the dynamic properties of the mechanical arm were studied using a positive feedback network. The adaptive neural network management system was developed, and the stability and integrity of the closed-loop system were proved by Lyapunov’s function. Engineering mechanical arm motion trajectory control errors were modeled and validated in the Matlab/Simulink environment. The simulation results show that the management of the adaptive neural network is able to better control the desired path of the engineering mechanical arm in the presence of external interference, and the fluctuation range of input torque is small. The PID control has a large error in the expected trajectory tracking of the engineering mechanical arm, the fluctuation range of the input torque is as high as 20, and the jitter phenomenon is more serious. The use of detailed comparisons and adaptive neural network monitoring can perform well in manipulating the trajectory of the engineering mechanical arm. The engineering mechanical arm uses an adaptive neural network control method, in which the control precision of engineering mechanical arm motion trajectory can be improved and the out-of-control phenomenon of mechanical arm motion can be reduced.

Funder

National Science and Technology Support Program of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3