Affiliation:
1. School of Civil Engineering, The University of Queensland, Brisbane, QLD, Australia
Abstract
The increasing availability of public transit smart card data has enabled several studies to focus on identifying passengers with similar spatial and/or temporal trip characteristics. However, this paper goes one step further by investigating the relationship between passengers’ spatial and temporal characteristics. For the first time, this paper investigates the correlation of the spatial similarity with the temporal similarity between public transit passengers by developing spatial similarity and temporal similarity measures for the public transit network with a novel passenger-based perspective. The perspective considers the passengers as agents who can make multiple trips in the network. The spatial similarity measure takes into account direction as well as the distance between the trips of the passengers. The temporal similarity measure considers both the boarding and alighting time in a continuous linear space. The spatial-temporal similarity correlation between passengers is analysed using histograms, Pearson correlation coefficients, and hexagonal binning. Also, relations between the spatial and temporal similarity values with the trip time and length are examined. The proposed methodology is implemented for four-day smart card data including 80,000 passengers in Brisbane, Australia. The results show a nonlinear spatial-temporal similarity correlation among the passengers.
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献