Affiliation:
1. School of Mathematics and Statistics, Hebei University of Economics and Business, Shijiazhuang, Hebei 050061, China
Abstract
This paper addresses the problem of predicting human actions in depth videos. Due to the complex spatiotemporal structure of human actions, it is difficult to infer ongoing human actions before they are fully executed. To handle this challenging issue, we first propose two new depth-based features called pairwise relative joint orientations (PRJOs) and depth patch motion maps (DPMMs) to represent the relative movements between each pair of joints and human-object interactions, respectively. The two proposed depth-based features are suitable for recognizing and predicting human actions in real-time fashion. Then, we propose a regression-based learning approach with a group sparsity inducing regularizer to learn action predictor based on the combination of PRJOs and DPMMs for a sparse set of joints. Experimental results on benchmark datasets have demonstrated that our proposed approach significantly outperforms existing methods for real-time human action recognition and prediction from depth data.
Funder
Human Resources and Social Security
Subject
General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献