Optimization Method for Energy Saving of Rural Architectures in Hot Summer and Cold Winter Areas Based on Artificial Neural Network

Author:

Yang Yong1ORCID,Liu Xiancheng1ORCID,Tian Congxiang2ORCID

Affiliation:

1. School of Urban Construction, Yangtze University, Jingzhou 434100, China

2. Yangtze University College of Arts and Sciences, Jingzhou 434100, China

Abstract

With the phased spatial planning of the rural revitalization strategy, the proportion of architecture energy consumption in the overall social energy consumption is also increasing year by year. Considering the hot summer and cold winter areas, the proportion of architecture energy consumption in the total energy consumption is very large. The ecological environment and natural resources have been greatly threatened, and the issue of energy conservation and environmental protection is imminent. Energy consumption prediction and analysis is an important branch of building energy conservation in the field of building technology and science. Aiming at the energy consumption characteristics of rural architectures in areas with hot summer and cold winter, this paper proposes a method for constructing a neural network model. When building a neural network, the dataset is called and the function is applied randomly to training samples. The data are used for simulation tests to analyze the fit between the predicted results and the calculated results. Flexible forecasting of specific target building energy consumption is achieved, which can provide optimization strategies for updating and adjusting architecture energy efficiency design. The experimental analysis benchmark parameters and the output value in the dataset are compared with the target simulation value. The relative error is less than 4%, and the average relative error value (mean) and the root mean square error (RMSE) value are both controlled within 2%. It is proved that the method in this paper can directly reflect the evaluation of energy consumption by the neural network and realize the high-speed conversion of the generalized model to the concrete goal, which has a certain value and research significance.

Funder

Hubei Provincial Education Department Scientific Research Project

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3