NDRG4 Alleviates Myocardial Infarction-Induced Apoptosis through the JAK2/STAT3 Pathway

Author:

Zhao Changliang1ORCID,Ren Yuanyuan1,Zhang Yachao2

Affiliation:

1. Department of Cardiology 4, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000 Heilongjiang, China

2. Intensive Care Unit, Hospital of Traditional Chinese Medicine of Qiqihar, Qiqihar, 161000 Heilongjiang, China

Abstract

Objective. At present, studies have confirmed that NDRG4 is specifically expressed in the heart, while its effect on the heart is still unclear. This study is to explore the effect of NDRG4 on cardiomyocyte apoptosis caused by acute myocardial infarction (AMI). Methods. Twenty SD rats were randomly divided into Sham (left anterior descent of heart without ligation) and AMI groups. In this study, coronary artery ligation was used to establish an AMI model, and the AMI model was verified by auxiliary examination and pathological examination. Besides, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB) was used to detect the expression level of Bax and Bcl-2 in heart tissues, and NDRG mRNA levels in tissues were also detected. qRT-PCR technology was used to verify the transfection efficiency of NDRG4 in H9C2 cells, and the change of apoptosis level of H9C2 cells was detected by Cell Counting Kit-8 (CCK-8) assay and TUNEL staining; besides, the expression level of apoptosis-related factors was detected by WB and qRT-PCR technology. Simultaneously with the modeling of rats, we injected adenovirus (Ad) into the heart tissue and examined the structural and functional changes of the rat heart. Then, WB technology was used to detect the expression level of the JAK2/STAT3 signaling pathway. Results. The heart function and heart structure of rats in the MI group were dramatically worse, and the expression level of NDRG4 was also dramatically reduced. The overexpression of NDRG4 in H9C2 cells can effectively inhibit the ischemia/hypoxia- (I/H-) induced decrease in cell viability and increase in apoptosis rate and inhibit the increase in Bax/Bcl-2 ratio. Moreover, overexpression of NDRG4 in heart tissue can effectively improve the cardiac function and structural destruction caused by MI. In addition, NDRG4 can inhibit JAK2/STAT3 pathway activation. Conclusion. The expression of NDRG4 in the MI tissue of rats was suppressed, while overexpression of NDRG4 by injection of Ad can obviously protect the rat heart. Furthermore, overexpression of NDRG4 in H9C2 cells can effectively inhibit the I/H-induced decrease in cell viability and increase in apoptosis rate, and this may be related to the inhibition of the JAK2/STAT3 signaling pathway.

Funder

Qiqihar Science and Technology Research Project

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3