Study on Prediction of Outburst Risk of Excavation Face by Initial Gas Emission

Author:

Gao Lu1ORCID,Kang Xiangtao1ORCID,Tang Meng1ORCID,Hu Jinguo1ORCID,Ren Jiachi1ORCID,Zhou Cunliu1ORCID

Affiliation:

1. Mining College, Guizhou University, Guiyang 550025, China

Abstract

In order to improve the accuracy of coal and gas outburst risk prediction for an excavation face, an outburst equilibrium equation for the excavation face was established based on the Mohr–Coulomb criterion to predict the coal and gas outburst risk for the excavation face. The numerical model was established using the COMSOL Multiphysics simulation software to explore the relationship between the initial gas emissions from the borehole and the gas pressure. Using a ZTL20/1000-Z mine flameproof prediction device, taking excavation face 9301 in the Anshun Coal Mine in Guizhou Province, China, as the research object, and taking the detailed regulations for prevention and control of coal and gas outburst promulgated by the China Coal Mine Safety Supervision Bureau in 2019 as the prediction standard for coal and gas outbursts, an experiment on the outburst risk prediction for the excavation face was conducted. The results show that the gas pressure measured in the borehole is positively correlated with the initial gas emissions, and the initial gas flow can be used as a sensitive index to predict the outburst risk of the excavation face. The initial gas flow increases as the borehole depth increases, and it tends to be stable in the later stage. The initial borehole gas flow can not only reflect the outburst risk but also reveal the possible location of the outburst, which has obvious advantages over other outburst prediction indexes.

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monitoring of aerological risks of accidents in coal mines;Gornye nauki i tekhnologii = Mining Science and Technology (Russia);2023-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3