Phase Equilibria and Phase Diagrams for the Ternary Aqueous System Containing Lithium, Sodium, and Pentaborate Ions at 298.15 and 323.15 K and 101.325 kPa

Author:

Li Panpan1,Zhao Kaiyu1,Chen Shangqing1,Hu Jiayin1ORCID,Guo Yafei1ORCID,Li Mingli2,Duo Ji2,Deng Tianlong1ORCID

Affiliation:

1. Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China

2. Central Laboratory of Tibet Autonomous Region Bureau of Geological & Mineral Resources, Lasa 850033, China

Abstract

Phase equilibria and phase diagrams for the ternary aqueous system containing lithium, sodium, and pentaborate ions at 298.15 and 323.15 K and 101.325 kPa were investigated by the methods of isothermal dissolution equilibrium. From the experimental data, the phase diagrams and the diagrams of physicochemical properties versus composition of lithium pentaborate in the equilibrium systems were plotted, respectively. The phase diagrams of the ternary system LiB5O8 + NaB5O8 + H2O at two temperatures contain one invariant point, two univariant curves, and two crystallization regions corresponding to sodium pentaborate pentahydrate (NaB5O8·5H2O) and lithium pentaborate pentahydrate (LiB5O8·5H2O). Due to the different dissolution behaviors of pentaborate salts in the aqueous systems, the component of LiB5O8 has a relatively strong effect on the solubility of NaB5O8. It was found that this system belongs to a simple eutectic type at two temperatures, and neither double salts nor solid solutions were formed. The densities and refractive indices in the ternary system at 298.15 and 323.15 K are as similar as changing regularly with the increase of LiB5O8 concentration. On the basis of empirical equations of the density and refractive index in electrolytes, the calculated values of density and refractive index agreed well with the experimental values at two temperatures.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemistry

Reference20 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3