Photocatalytic Degradation of 2,4-Dichlorophenol by TiO2 Intercalated Talc Nanocomposite

Author:

Ai Manqing1ORCID,Qin Wenli1,Xia Tian1,Ye Ying1,Chen Xuegang1,Zhang Pingping1ORCID

Affiliation:

1. Zhejiang University, Marine Science Department, Zhoushan 316000, China

Abstract

Novel nanocomposites have been prepared by intercalating TiO2 nanoparticles into talc. The nanocomposites have been verified by X-ray diffraction (XRD) from the appearance of a characteristic diffraction peak of TiO2. Thermal behavior of the prepared samples is examined by thermogravimetric analyzer (TGA), scanning electron microscope (SEM), and energy dispersive spectrometer (EDS), which have shown no TiO2 particles on the surface of the talc. The TiO2 particles are found in the layers of talc by transmission electron microscopy (TEM) and the Brunauer-Emmett-Teller (BET) method, which have shown the increase of specific surface areas and total pore volumes and the decline of average pore diameters. As the strong adsorption ability of talc can intensify the power of photon absorption and capture-recombination carriers, more than 99.5% of 2,4-dichlorophenol can be degraded in 1 h by the nanocomposite under an ultraviolet lamp in neutral solution and room temperature after reaching adsorption equilibrium, and the result of adsorbance is in accord with the first-order kinetic. The degradation rate was maintained at about 99% after 20 times. Therefore, the prepared talc/TiO2 nanocomposite is an efficient, stable, and recyclable material for wastewater treatment.

Funder

National Oil and Gas Project

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3