MicroRNA Expression Profiles Identify Biomarker for Differentiating the Embolic Stroke from Thrombotic Stroke

Author:

Chen Lai-Te1ORCID,Jiang Chen-Yang2ORCID

Affiliation:

1. Zhejiang University, School of Medicine, Hangzhou, Zhejiang Province, China

2. Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang Province, China

Abstract

In order to identify potential biomarkers that distinguish the embolic stroke (ES) from thrombotic stroke (TS), a profile of microRNA expression was analyzed. The GSE60319 expression profile was downloaded from the Gene Expression Omnibus (GEO) database. The GEO2R was applied to screen for differentially expressed microRNAs (DEmiRNAs) between the embolic stroke group and thrombotic stroke group. The miRWalk was utilized to predict the target genes of DEmiRNAs. Genes associated with embolic stroke were downloaded from the Comparative Toxicogenomics Database. Cross reference of target genes to disease related genes was conducted to construct the DEmiRNA-gene network. The protein-protein interaction (PPI) network of overlapping genes was evaluated by STRING, using the MCODE and CytoHubba plugin of Cytoscape to identify the modules and hub genes. The enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) in modules was performed. There were 30 microRNAs in total identified as DEmiRNAs between embolic stroke and thrombotic stroke groups, of which 8 were upregulated and 22 were downregulated. Among these differentially expressed miRNAs, miR-15a-5p, miR-17-5p, miR-19b-3p, and miR-20a-5p were significantly associated with an ES to TS. Using the miRWalk 3.0 online tool, target genes regulated by DEmiRNAs were predicted. In addition, disease related genes were predicted and compared with target genes of DEmiRNAs. 166 overlapped genes regulated by miR-15a-5p, miR-17-5p, miR-19b-3p, and miR-20a-5p were identified, suggesting their association with diseases that contributed to ES, mainly including atrial fibrillation, mitral valve stenosis, myocardial infarction, and aortic dissection. Therefore, miR-15a-5p, miR-17-5p, miR-19b-3p, and miR-20a-5p were promising candidate biomarkers for differentiating an ES from TS. The PPI network demonstrated that miR-15a-5p, miR-17-5p, miR-19b-3p, and miR-20a-5p were associated with an ES by mainly regulating “CCND1, E2F2, E2F3, ITCH, UBE4A, UBE3C, RBL2, FBXO31, EIF2C4, and EIF2C1”. Furthermore, miR-15a-5p and miR-17-5p may function through “cell cycle, prostate cancer, and small cell lung cancer” while miR-19b-3p and miR-20a-5p function through “insulin resistance, hepatitis B, and viral carcinogenesis” and “vasopressin-regulated water reabsorption”, respectively. However, these results were approached in the manner of bioinformatics analysis; therefore, further verification is required.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3