Affiliation:
1. School of Electrical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
2. Zhengzhou Key Laboratory of Machine Perception and Intelligence Systems, Zhengzhou, Henan 450001, China
Abstract
Node localization is a fundamental issue in wireless sensor network (WSN), as many applications depend on the precise location of the sensor nodes (SNs). Among all localization algorithms, DV_Hop is a typical range-free localization algorithm characterized by such advantages as simple realization and low energy cost. From detailed analysis of localization error for the basic DV_Hop algorithm, we propose a connectivity weighting DV_Hop localization algorithm using modified artificial bee colony optimization. Firstly, the proposed algorithm calculates the average hop distance (AHD) of anchor nodes in terms of the minimum mean squared distance error between the estimated distances of anchor nodes and the corresponding actual distances from them. After that, a connectivity weighting method, considering the influence from both local network properties of anchor nodes and the distances from anchor nodes to unknown nodes, is designed to obtain the AHD of unknown nodes. In addition, we set up the weighting calculation proportion of anchor nodes at the same time. Finally, a modified artificial bee colony algorithm which enlarges searching space is used to optimize the execution of multilateral localization. The experimental results demonstrate that the connectivity weighting approach has better localization effect, and the AHD of unknown nodes close to true value can be obtained at a relatively large probability. Moreover, the modified artificial bee colony algorithm can reduce the probability of premature convergence, and thus the localization accuracy is further improved.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献