Multiobjective Optimization Design and Experimental Investigation on the Axial Flow Pump with Orthogonal Test Approach

Author:

Zhang Yuquan1ORCID,Xu Yanhe2ORCID,Zheng Yuan1ORCID,Fernandez-Rodriguez E.3,Sun Aoran4,Yang Chunxia1ORCID,Wang Jue5ORCID

Affiliation:

1. College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China

2. School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

3. Technological Institute of Merida, Technological Avenue, Merida 97118, Mexico

4. Anhui Survey and Design Institute of Water Conservancy and Hydropower, Hefei 230088, China

5. College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China

Abstract

A multiobjective optimization technique based on the computational fluid dynamics (CFD) simulations and the orthogonal test is proposed to reduce the pressure pulsation in this paper. Three levels of four well-known performance factors L9 (34) were considered in the orthogonal test scheme: the number of blades, the blade setting angle, the hub ratio, and the distance between the blade and the guide vane. The evaluation indexes corresponded to the head, efficiency, shaft power, and pressure pulsation, respectively. An optimal configuration A2B1C2D3 was obtained by comprehensive frequency analysis method, after intuitive and range analysis. In comparison with the nonoptimized model, the new design’s head and efficiency increased by 17.8% and 4.26%, whilst the shaft power and the pressure pulsation coefficient reduced by 1.22% and 11%, respectively. Experiments conducted on the optimized pump were consistent with the CFD model. Six different rotational speed conditions in the optimal operating points were numerically calculated in order to explore the internal hydraulic characteristics of the optimized axial flow pump. It is verified that the comprehensive frequency analysis method based on the orthogonal test approach is effective for the multiobjective optimization of the axial flow pump.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3