Identification of Ten-Gene Related to Lipid Metabolism for Predicting Overall Survival of Breast Invasive Carcinoma

Author:

Wang Zhixing1,Wang Fan1ORCID

Affiliation:

1. Medical College, Jiangsu Vocational College of Medicine, YanCheng 224000, Jiangsu, China

Abstract

Background. Predicting the risk of poor prognosis of breast cancer is crucial to treating breast cancer. This study investigated the prognostic assessment of 10 lipid metabolism-related genes constructed as breast cancer models based on this study. Methods. The TCGA database was used to obtain clinical information and expression data of breast cancer patients, and GSEA analysis and univariate and multivariate Cox proportional risk regression models were performed to identify lipid metabolism genes closely associated with overall survival (OS) of breast cancer patients and to construct a prognostic risk score model based on lipid metabolism gene markers. The Kaplan–Meier method was used to analyze the survival status of patients with high and low-risk scores, and ROC curves assessed the accuracy of this risk score. Finally, the relationship between this risk score and clinicopathological characteristics of BRCA was analyzed in a stratified manner, and the validity of this risk score as an independent prognostic factor was determined using univariate and multivariate Cox regression analyses. Results. One hundred and forty-four differentially expressed lipid metabolism-related genes were identified in cancer and paracancerous tissues in BRCA, 21 of which were associated with overall survival (OS) in BRCA P < 0.05 . Univariate and multivariate Cox analyses revealed that age, grade, and risk score were independent prognostic factors for BRCA. Multivariate Cox regression analysis further identified APOL4, NR1H3, SLC25A5, APOL3, OSBPL1A, DYNLT1, IMMT, MAP2K6, ZDHHC8, and RAB2A lipid metabolism-related genes as independent prognostic markers for BRCA. A prognostic risk score model was developed by labeling lipid metabolism genes with these 10 genes, and patients with BRCA with high-risk scores in the model sample had significantly worse OS than those with low-risk P < 0.01 . The ROC curve area (AUC) of this risk score model was 0.712. Conclusion. By mining the TCGA database, we identified 10 lipid metabolism-related genes APOL4, NR1H3, SLC25A5, APOL3, OSBPL1A, DYNLT1, IMMT, MAP2K6, ZDHHC8, and RAB2A, which are closely related to the prognosis of BRCA patients, and constructed a prognostic risk scoring system based on 10 lipid metabolism genes tags.

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3