Production of Human Endothelial Cells Free from Soluble Xenogeneic Antigens for Bioartificial Small Diameter Vascular Graft Endothelization

Author:

Carvalho Juliana Lott de1,Zonari Alessandra1ORCID,de Paula Ana Cláudia Chagas1,Martins Thaís Maria da Mata1,Gomes Dawidson Assis1,Goes Alfredo Miranda1

Affiliation:

1. Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil

Abstract

Arterial bypass graft implantation remains the primary therapy for patients with advanced cardiovascular disease, but most lack adequate saphenous vein or other conduits for bypass procedures and would benefit from a bioartificial conduit. This study aimed to produce human endothelial cells (hECs) in large scale, free from xenogeneic antigens, to develop a small diameter, compatible vessel for potential use as a vascular graft. Human adipose-derived stromal cells (hASCs) were isolated, cultured, and differentiated in the presence of human serum and used for the reendothelization of a decellularized rat aorta. hASC derived ECs (hASC-ECs) expressed VEGFR2, vWf and CD31 endothelial cell markers, the latter in higher levels than hASCs and HUVECs, and were shown to be functional. Decellularization protocol yielded aortas devoid of cell nuclei, with preserved structure, including a preserved basement membrane. When seeded with hASC-ECs, the decellularized aorta was completely reendothelized, and the hASC-ECs maintained their phenotype in this new condition. hASCs can be differentiated into functional hECs without the use of animal supplements and are capable of reendothelizing a decellularized rat aorta while maintaining their phenotype. The preservation of the basement membrane following decellularization supported the complete reendothelization of the scaffold with no cell migration towards other layers. This approach is potentially useful for rapid obtention of compatible, xenogeneic-free conduit.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3