Denoising by Decorated Noise: An Interpretability-Based Framework for Adversarial Example Detection

Author:

Zhao Zitian1ORCID,Zhan Wenhan1ORCID,Cheng Yamin1,Duan Hancong1,Wu Yue1,Zhang Ke1ORCID

Affiliation:

1. School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

The intelligent imaging sensors in IoT benefit a lot from the continuous renewal of deep neural networks (DNNs). However, the appearance of adversarial examples leads to skepticism about the trustworthiness of DNNs. Malicious perturbations, even unperceivable for humans, lead to incapacitations of a DNN, bringing about the security problem in the information integration of an IoT system. Adversarial example detection is an intuitive solution to judge if an input is malicious before acceptance. However, the existing detection approaches, more or less, have some shortcomings like (1) modifying the network structure, (2) extra training before deployment, and (3) requiring some prior knowledge about attacks. To address these problems, this paper proposes a novel framework to filter out the adversarial perturbations by superimposing the original images with the noises decorated by a new gradient-independent visualization method, namely, score class activation map (Score-CAM). We propose to trim the Gaussian noises in a way with more explicit semantic meaning and stronger explainability, which is different from the previous studies based on intuitive hypotheses or artificial denoisers. Our framework requires no extra training and gradient calculation, which is friendly to embedded devices with only inference capabilities. Extensive experiments demonstrate that the proposed framework is sufficiently general to detect a wide range of attacks and apply it to different models.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3