High-Precision Guide Stiffness Analysis Method for Micromechanism Based on the Boundary Element Method

Author:

Yang Manzhi1ORCID,Lv Zhenyang1ORCID,Jing Gang1ORCID,Guo Wei1,Huang Yumei2,Li Linyue1ORCID,Wei Kaiyang1ORCID,Feng Bin1,Ge Hongyu1

Affiliation:

1. College of Mechanical Engineering, Xi’an University of Science and Technology, No. 58 Yanta Middle Road, Xi’an 710054, Shaanxi, China

2. School of Mechanical and Precision Instrumental Engineering, Xi’an University of Technology, No. 8 Jinhua South Road, Xi’an 710048, Shaanxi, China

Abstract

The guide stiffness performance directly affects the motion of the micromechanism in accuracy and security. Therefore, it is crucial to analyze the guide stiffness precisely. In this paper, a high-precision guide stiffness analysis method for the micromechanism by the boundary element method (BEM) is proposed. The validity and accuracy of the analysis method are tested by a guide stiffness experiment. In order to ensure the accuracy and safety during the micromechanism motion, a guiding unit of the micromechanism was designed based on the guiding principle. The guiding unit can provide parasitic motion and additional force in the motion of the micromechanism. Then, the stiffness equations of the beam element are derived by the boundary element method. The stiffness equation of straight circular flexure hinge is analyzed by rigid discretization and rigid combination, and the guide stiffness of the mechanism is investigated by rigid combination. Finally, according to the actual situation, the stiffness matrix of the guide rail (Kb) was proposed, and the analytical value of the guide stiffness was calculated to be 22.2 N/μm. The guide stiffness performance experiment was completed, and the experimental value is 22.3 N/μm. Therefore, the error between the analysis method and the experimental results is 0.45%. This study provides a new method for the stiffness analysis of high-precision micromechanisms and presents a reference for the design and stiffness analysis of complex structures. This method is helpful for stiffness analysis of the microrotary mechanism with high accuracy.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3