Study on Mechanical Properties of Basalt Fiber-Reinforced Concrete with High Content of Stone Powder at High Temperatures

Author:

Xu Lina12ORCID,Song Daohan3ORCID,Liu Ning3ORCID,Tian Wei2ORCID

Affiliation:

1. Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun, China

2. School of Transportation Science and Engineering, Jilin Jianzhu University, Changchun 130118, China

3. School of Civil Engineering, Jilin Jianzhu University, Changchun 130118, China

Abstract

Concrete materials are an important part of global structure, and their fire resistance directly affects the safety of buildings and tunnels. In this study, basalt fiber was used to reinforce concrete with high content of stone powder in order to enhance its high-temperature performance. The mechanical properties and ultrasonic characteristics at different temperatures were studied using the cube compressive strength test and nonlinear ultrasonic test. The results indicated that the addition of basalt fiber in specimens improved their compressive strength; however, this strength did not continuously increase with increases in the fiber length and fiber content, and the optimal values for fiber length and fiber content were determined to be 12 mm and 1 kg/m3 at 600°C, respectively. With increases in temperature, the unconfined compressive strength increased first and then decreased. When the temperature was 400°C, the unconfined compressive strength of the specimens reached their highest values and then decreased. When the temperature was 400°C and 600°C, the strength of the stone powder concrete with fiber was higher than that without fiber, which shows that fiber can improve the mechanical properties of concrete at high temperatures. Based on the Box-Behnken design (BBD) method, the unconfined compressive strength response regression model of basalt fiber-reinforced concrete with high content of stone powder, which follows parameters including fiber content, fiber length, and temperature at high-temperature environments, was established, and it was found that the interaction of fiber content, fiber length, and the temperature was significant based on multifactor interaction analysis. The analysis of ultrasonic signals based on the S transform showed that, with increases in temperature, the amplitudes of the acoustic response signals, the corresponding frequency spectrum, and the time-frequency spectrum were clearly reduced. At the same temperature, the amplitudes of the acoustic response signals of different concrete testing blocks did not change much and remained at the same level.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3