Affiliation:
1. School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611131, China
Abstract
A general parametric controller design method is proposed for Hopf bifurcation of nonlinear dynamic system. This method does not increase the dimension of the system. Compared with the existing methods, the controller designed by this method has a lower controller order and a simpler structure, and it does not contain equilibrium points. The method keeps equilibrium of the origin system unchanged. Symbolic computation is used to deduce the constraints of controller, and cylindrical algebraic decomposition is used to find the stability parameter regions in parameter space of controller. The method is then employed for Hopf bifurcation control. Taking Lorenz system as an example, the controller design steps of the method and numerical simulations are discussed. Computer simulation results are presented to confirm the analytical predictions.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献