Multiobjective Optimization of Composite Material Seat Plate for Mortar Based on the Hybrid Surrogate Model

Author:

Wang Fengfeng12,Xu Chundong2ORCID,Li Lei2

Affiliation:

1. School of Mechanical and Electrical Engineering, Jinling Institute of Technology, Nanjing 211169, China

2. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

As an important force transmission component of mortars, the seat plate affects some core indicators of mortars such as range, shooting accuracy, and maneuverability. In order to withstand huge impact loads, the seat plate was previously made of metal, which accounts for approximately 30%–45% of the total weight of the gun. The drawbacks of the heavy weight of the seat plate, which are not conducive to transportation and transfer, run counter to the current direction of the mortar’s lightweight development. The application of composite materials can greatly reduce the weight of the seat plate, but it exacerbates the contradiction between the mobility and combat effectiveness of mortars. In order to achieve the best match between mortar stability and maneuverability, a multiobjective optimization of composite material layers for seat plates is proposed, utilizing the designability of composite material layers. First, a fiber continuity model based on dropout sequence is adopted to solve the problems existing in the design of inherent continuity classes for composite layered fibers. Second, a hybrid surrogate model that considers the composite material seat plate quality, structural strength, shooting stability, shooting accuracy, and various working conditions is considered. Then, in order to improve the optimization efficiency and robustness of the algorithm, a multiobjective optimization algorithm based on the Chebyshev combination pattern is used to solve the mixed surrogate model. Finally, the optimization results are comprehensively evaluated against the optimization objectives. Research has shown that the method proposed in this article can effectively solve the time-consuming problem of multiobjective optimization, improve the accuracy of hybrid surrogate models, and meet the expected requirements of multiobjective optimization of composite material seat plates. While ensuring shooting stability, the weight of the seat plate is reduced by 18.43% compared to the metal seat plate, which has important application value for lightweight design of mortars.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Reference41 articles.

1. Characterization of carbon fiber composite materials for RF applications;E. J. Riley;Radar Sensor Technology XVIII International Society for Optics and Photonics,2014

2. Modeling the influence of layer shifting on the properties and nonlinear response of woven composites subject to continuum damage

3. Topological optimization design of a mortar pedestal plate;X. M. Zhang;Journal of Ordnance Equipment Engineering,2016

4. MaH. F.Structural analysis and optimization design of mortar pedestal plate2009Nanjing, ChinaNanjing University of TechnologyMaster’s Thesis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3