Distance Variance Score: An Efficient Feature Selection Method in Text Classification

Author:

Wang Heyong1,Hong Ming1ORCID

Affiliation:

1. Department of E-Business, South China University of Technology, Guangzhou 510006, China

Abstract

With the rapid development of web applications such as social network, a large amount of electric text data is accumulated and available on the Internet, which causes increasing interests in text mining. Text classification is one of the most important subfields of text mining. In fact, text documents are often represented as a high-dimensional sparse document term matrix (DTM) before classification. Feature selection is essential and vital for text classification due to high dimensionality and sparsity of DTM. An efficient feature selection method is capable of both reducing dimensions of DTM and selecting discriminative features for text classification. Laplacian Score (LS) is one of the unsupervised feature selection methods and it has been successfully used in areas such as face recognition. However, LS is unable to select discriminative features for text classification and to effectively reduce the sparsity of DTM. To improve it, this paper proposes an unsupervised feature selection method named Distance Variance Score (DVS). DVS uses feature distance contribution (a ratio) to rank the importance of features for text documents so as to select discriminative features. Experimental results indicate that DVS is able to select discriminative features and reduce the sparsity of DTM. Thus, it is much more efficient than LS.

Funder

National Social Sciences Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3