An Accurate Mathematical Model and Experimental Research of Pressure Distribution in the Spool Valve Clearance Film

Author:

Chen Jia1,Li Fei1ORCID,Yang Yi1

Affiliation:

1. School of Electronic Engineering, Xi’an Shiyou University, No. 18, East Section of Electronic 2nd Road, Xi’an, Shannxi, China

Abstract

As an actuator control element of the electrohydraulic system in aerospace, airplanes, and other equipment, the spool valve is prone to the “hydraulic lock” problem, which may cause major accidents of these electrohydraulic systems. The grooves engraved on the spool can effectively eliminate this problem by migrating the uneven pressure distribution in the clearance film between the sleeve and the spool. The effect of migrating uneven pressure distribution depends on the groove parameters. This paper proposed an accurate mathematical model with rectangular grooves to investigate the effect. Unlike previous mathematical models based on the Reynolds equation, the proposed model is based on the Navier–Stokes equation, which is more valid in the range where the clearance film thickness is much less than the groove depth. Meanwhile, the mathematical model takes the distributions, width, depth, and the number of grooves into consideration. Then, the proposed mathematical model was used to investigate the effects of mitigating the uneven pressure distribution under various parameters of grooves. To verify the accuracy of the mathematical model, the volume flow leakage in the clearance film obtained by the proposed model and the Reynolds equation, respectively, is compared with that obtained by the experimental test. The comparison results indicate that the results obtained by the Reynolds equation could reach a maximum of 14.75% different from the experimental results, while the results obtained by the NS equation are only 5.57% different under the same conditions, implying that the mathematical model derived from the NS equation is more accurate.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference27 articles.

1. Preliminary investigation of hydraulic lock;D. C. Sweeny;Engineering,1951

2. Further Aspects of Hydraulic Lock

3. Flow-force analysis in a hydraulic sliding-spool valve;N. Herakovi£;Strojarstvo,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing spool valve sealing performance with an annular groove;Journal of Physics: Conference Series;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3