Improved Kaplan-Meier Estimator in Survival Analysis Based on Partially Rank-Ordered Set Samples

Author:

Nematolahi Samane1,Nazari Sahar2,Shayan Zahra1,Ayatollahi Seyyed Mohammad Taghi1ORCID,Amanati Ali3

Affiliation:

1. Department of Biostatistics, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran

2. Department of Medicine, University of Alberta, Edmonton, Canada

3. Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

This study presents a novel methodology to investigate the nonparametric estimation of a survival probability under random censoring time using the ranked observations from a Partially Rank-Ordered Set (PROS) sampling design and employs it in a hematological disorder study. The PROS sampling design has numerous applications in medicine, social sciences and ecology where the exact measurement of the sampling units is costly; however, sampling units can be ordered by using judgment ranking or available concomitant information. The general estimation methods are not directly applicable to the case where samples are from rank-based sampling designs, because the sampling units do not meet the identically distributed assumption. We derive asymptotic distribution of a Kaplan-Meier (KM) estimator under PROS sampling design. Finally, we compare the performance of the suggested estimators via several simulation studies and apply the proposed methods to a real data set. The results show that the proposed estimator under rank-based sampling designs outperforms its counterpart in a simple random sample (SRS).

Funder

Shiraz University of Medical Sciences

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3