Research on SBMPC Algorithm for Path Planning of Rescue and Detection Robot

Author:

Wang Lin-Lin1,Pan Li-Xin2ORCID

Affiliation:

1. College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010080, China

2. Beijing Institute of Control Engineering, China Academy of Space Technology, Beijing 100190, China

Abstract

This research aims to improve autonomous navigation of coal mine rescue and detection robot, eliminate the danger for rescuers, and enhance the security of rescue work. The concept of model predictive control is introduced into path planning of rescue and detection robot in this paper. Sampling-Based Model Predictive Control (SBMPC) algorithm is proposed basing on the construction of cost function and predictive kinematics model. Firstly, input sampling is conducted in control variable space of robot motion in order to generate candidate path planning solutions. Then, robot attitude and position in future time, which are regarded as output variables of robot motion, can be calculated through predictive kinematics model and input sampling data. The optimum solution of path planning is obtained from candidate solutions through continuous moving optimization of the defined cost function. The effects of the three sampling methods (viz., uniform sampling, Halton’s sampling, and CVT  sampling) on path planning performance are compared in simulations. Statistical analysis demonstrates that CVT sampling has the most uniform coverage in two-dimensional plane when sample amount is the same for three methods. Simulation results show that SBMPC algorithm is effective and feasible to plan a secure route for rescue and detection robot under complex environment.

Funder

Natural Science Foundation of Inner Mongolia

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Reference32 articles.

1. Towards Goal-Directed Navigation Through Combining Learning Based Global and Local Planners

2. Robot Motion Planning: A Distributed Representation Approach

3. Improved PRM for path planning in narrow passages;K. Cao

4. Balancing global exploration and local-connectivity exploitation with rapidly-exploring random disjointed-trees;T. Lai

5. Maximizing the Coverage of Roadmap Graph for Optimal Motion Planning

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3