Effect of Ultrahigh Frequency Radiation Emitted from 2G Cell Phone on Developing Lens of Chick Embryo: A Histological Study

Author:

D'Silva Mary Hydrina1,Swer Rijied Thompson1,Anbalagan J.1,Bhargavan Rajesh2

Affiliation:

1. Department of Anatomy, Mahatma Gandhi Medical College & Research Institute (MGMC&RI), Cuddalore-Pondy Main Road, Pillaiyarkuppam, Puducherry 607402, India

2. Department of Anatomy, Sri Lakshminarayana Institute of Medical Sciences (SLIMS), Bharath University, Puducherry 605502, India

Abstract

A Mobile phone in operation emits a pulsed radiofrequency electromagnetic field which is absorbed into the user’s body particularly the head region. Contradictory scientific reports on the health effect of nonionizing radiations on biological tissues have prompted to undertake the present study to evaluate the damage in the developing lens of a chick embryo following exposure to radiation emitted from a 2G cell phone. Fertilized chick embryos were incubated in two groups in a standard egg incubator. The experiment group was exposed to radiation emitted from a 2G cell phone. On completion of scheduled duration, the embryos were collected and processed for routine histological studies. The 9th to 12th day chick embryo eyes were processed for assessment of DNA damage using the alkaline comet assay technique. The lens thickness and the equatorial diameter were measured using oculometer and statistically compared for both groups. In the present study, the exposure of chick embryos to a 2G cell phone caused structural changes in lens epithelial cells, formation of cystic cells and spaces, distortion of lens fibers, and formation of posterior aberrant nuclear layer. The DNA damage in the developing eyes of the experiment group assessed by comet assay was highly significant.

Publisher

Hindawi Limited

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3