Research on Prediction Method of Performance Degradation of Flexible Optoelectronic Film Material Processing Equipment Based on Adaptive Fuzzy Clustering

Author:

Deng Yaohua12ORCID,Yao Kexing1ORCID,Lu Qiwen2ORCID

Affiliation:

1. School of Electro-Mechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China

2. Foshan Shike Intelligent Technology Co., Ltd., Foshan 528000, China

Abstract

Flexible photoelectric film is an anisotropic material. The slight change of equipment performance during processing is prone to cause deformation of the material. Therefore, it is important to predict the degradation of processing equipment performance. Since the performance degradation of flexible photoelectric film material Roll-to-Roll (R2R) processing equipment is a nonlinear process, this paper introduces an adaptive fuzzy clustering method to construct a fuzzy membership function model for calculating the performance degradation index of R2R processing equipment and studies the parameter solving method such as the AFCM division of the roller vibration data, the category center value of the fuzzy membership function, and the input data division area width. Finally, the performance degradation index calculation algorithm is designed. The roller shaft accelerated life test was carried out using self-made equipment. The test data were 1000 sets. The results showed that the root mean square eigenvalues and the kurtosis eigenvalues of the roller vibration data are sensitive to the performance degradation. The equipment performance curve described by the first and second types of performance degradation indicators was very stable in the early stage. After the 800th group, the curve continued to decrease, and the change was more severe, indicating that the performance degradation of the equipment is more serious. In the 980th group, the longer-lasting roller shaft was damaged, and the performance index value was about zero, which proved the correctness of the performance degradation prediction method proposed in this paper in calculating the performance degradation value of the equipment.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3