Marketing Archive Management of Drama Intangible Cultural Heritage Based on Particle Swarm Algorithm

Author:

Li Cenxi1,Liu Boya2ORCID

Affiliation:

1. Sichuan Conservatory of Music, Chengdu 610000, China

2. Chongqing Normal University, Chongqing 401331, China

Abstract

Each Chinese region has its own ancient opera, which is a treasure of folk culture and a living fossil for studying the historical origins of a local culture. It has significant academic value and historical significance at the national and local levels, whether from the perspective of promoting and disseminating national culture or from the perspective of protecting the world’s intangible cultural heritage. Based on this practical significance, this paper conducts a study using the particle swarm algorithm to manage the marketing archives of drama intangible cultural heritage. The article employs the PSO algorithm to test the particle swarm optimization algorithm’s convergence and conditions. The effectiveness of the algorithm is analysed in the Sphere function, Rosenbrock function, Griewanks function, and Rastrigin noncont function, and then the algorithm is compared, including the calculation speed comparison between the algorithm in this paper and the three optimal fitness functions. The experimental results show that the PSO algorithm has the highest four items in the statistics of the Schwefel function experimental results. About 45.0379 is the best value and 70.5878 is the maximum precision. The optimal average value is 6.1524, while the average value is 56.15245. In comparison to the QPSO and PSO algorithms, the algorithm in this paper has a faster convergence speed and better search accuracy. The topic of the intersection of the disciplines of drama, intangible cultural heritage marketing, and archive management using the particle swarm algorithm is well-developed.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3