Use of Artificial Neural Networks to Predict Wind-Induced External Pressure Coefficients on a Low-Rise Building: A Comparative Study

Author:

Rodríguez-Alcántara Josué U.1ORCID,Pozos-Estrada Adrián1ORCID,Gómez-Martinez Roberto1ORCID

Affiliation:

1. Instituto de Ingeniería, UNAM, Mexico City 04510, Mexico

Abstract

Wind flow on a bluff body is a complex and nonlinear phenomenon that has been mainly studied experimentally or analytically. Several mathematical methods have been developed to predict the wind-induced pressure distribution on bluff bodies; however, most of them result unpractical due to the mathematical complexity required. Long-short term memory artificial neural networks with deep learning have proven to be efficient tools in the solution of nonlinear phenomena, although the choice of a more efficient network model remains a topic of open discussion for researchers. The main objective of this study is to develop long-short term memory artificial neural network models to predict the external pressure distribution of a low-rise building. For the development of the artificial neural network models, the multilayer perceptron and the recurrent neural network were also employed for comparison purposes. To train the artificial neural networks, a database with the external pressure coefficients from boundary layer wind tunnel tests of a low-rise building is employed. The analysis results indicate that the long-short term memory artificial neural network model and the multilayer perceptron neural network outperform the recurrent neural network.

Funder

Institute of Engineering of the National Autonomous University of Mexico

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3