Using Real-Time fMRI Neurofeedback to Modulate M1-Cerebellum Connectivity

Author:

Madkhali Yahia1ORCID,Al-Wasity Salim2,Aldehmi Norah2,Pollick Frank3

Affiliation:

1. Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia

2. College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, Glassgow, UK

3. School of Psychology, University of Glasgow, Glassgow, UK

Abstract

Objective. The potential of neurofeedback to alter the M1-cerebellum connectivity was explored using motor imagery-based rt-fMRI. These regions were chosen due to their importance in motor performance and motor rehabilitation. Methods. Four right-handed individuals were recruited to examine the potential to change the M1-cerebellum neurofeedback link. The University of Glasgow Cognitive Neuroimaging Centre used a 3T MRI scanner from January 2019 to January 2020 to conduct this prospective study. Everyone participated in each fMRI session, which included six NF training runs. Participants were instructed to imagine complicated hand motions during the NF training to raise a thermometer bar’s height. To contrast the correlation coefficients between the initial and last NF runs, a t-test was performed post hoc. Results. The neurofeedback connection between M1 and the cerebellum was strengthened in each participant. Motor imagery strategy was a significant task in training M1-cerebellum connectivity as participants used it successfully to enhance the activation level between these regions during M1-cerebellum modulation using real-time fMRI. The t-test and linear regression, on the other hand, showed this increase to be insignificant. Conclusion. A novel technique to manipulate M1-cerebellum connectivity was discovered using real-time fMRI NF. This study showed that each participant’s neurofeedback connectivity between M1 and cerebellum was enhanced. This increase, on the other hand, was insignificant statistically. The results showed that the connectivity between both areas increased positively. Through the integration of fMRI and neurofeedback, M1-cerebellum connectivity can be positively affected.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3