A Personalized Recommendation Algorithm for Semantic Classification of New Book Recommendation Services for University Libraries

Author:

Pang Nan1ORCID

Affiliation:

1. Research Institute of Higher Education, North China University of Science and Technology, Hebei, Tangshan 063210, China

Abstract

With the rapid development of information technology and the Internet, it is difficult for university readers to find books of real interest or value from a large number of books by relying only on traditional retrieval-based services. This paper applies data mining technology and personalized recommendation algorithm based on semantic classification for new book recommendation service in university libraries. The personalized recommendation algorithm based on semantic classification establishes a book feature model and a reader preference model based on title keywords. The different recommendation strategies in the system framework are detailed. For the borrowing data of different colleges and departments, the improved association rule algorithm is used to mine the book association rules, and the reader’s borrowing history is matched with the association rules to generate a book recommendation list; according to the reader’s borrowing preference characteristics, the reader preference model is used as the basis. Class subdivision and then combined with the book feature model and reader preference model, the collaborative filtering recommendation algorithm and the content-based recommendation algorithm are applied to generate a book recommendation list. The active service method not only improves the service level of the university library, makes the development of the university library more comprehensive and humanized but also explores the potential information needs of readers, improves the borrowing rate of books in the collection, and maximizes the utilization rate of book resources. In the experiment of this paper, the personalized recommendation algorithm division of semantic classification is adopted. According to the division of its algorithm, the corpus is divided into 9603 training documents and 3299 test documents, with certain accuracy.

Funder

North China University of Science and Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference23 articles.

1. College Library Personalized Recommendation System Based on Hybrid Recommendation Algorithm

2. A study on the teacher librarians’ book recommendation services for individual students;Y. O. Lee;Journal of Korean Library and Information Science Society,2021

3. A novel recommendation method based on social network using matrix factorization technique

4. Applying machine translation and language modelling strategies for the recommendation task of micro learning service;J. Lin;Educational Technology & Society,2022

5. Book recommendation system using item based collaborative filtering;K. Shah;International Research Journal of Engineering and Technology,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3