Effect of Wetting and Drying Cycles on the Dynamic Properties of Compacted Loess

Author:

Wang Jian1,Zhao Mi-Jun1,Zhang Jun-Zheng1,Hao Yan-Zhou2ORCID,He Rui-Xia2

Affiliation:

1. Henan Bureau Group Co. Ltd of China Chemical and Geology, Zhengzhou, Henan 450000, China

2. School of Civil and Transportation Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467036, China

Abstract

This paper investigates the dynamic properties of compacted loess under wetting and drying (W-D) cycles. A series of tests were conducted on compacted loess samples, namely, the soil dynamic triaxial test and the scanning electron microscopy (SEM) test. The test results showed that the dynamic stress-strain relationship of the compacted loess under the action of W-D cycles accords with the Hardin–Drnevich model. The initial dynamic shear modulus (G0) and the maximum dynamic shear stress (τy) of the compacted loess first decreased and then increased with the number of W-D cycles (n) increasing. The damping ratio (λ) increased linearly with the dynamic strain (εd) increasing in the semilogarithmic coordinate. The defined change rate of the damping ratio (η) first increased and then decreased with the n increasing. The macrostructure and microstructure characteristics of samples in the process of W-D cycles indicate that the increasing number of pores in the humidifying process and the cracks on the surface and inside of samples during dehumidification lead to the structural damage and dynamic properties reduction of compacted loess. The main reasons for structure strengthening and dynamic properties increasing are that soil particle structure develops to mosaic structure, pore structure develops to uniform small pore, and matrix suction makes soil sample tend to be dense.

Funder

Henan Bureau Group Co. Ltd of China Chemical and Geology

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3