Thymol Disrupts Cell Homeostasis and Inhibits the Growth of Staphylococcus aureus

Author:

Li Qingxiang1,Huang Ke Xing2,Pan Sheng1,Su Chun3,Bi Juan4ORCID,Lu Xuan5

Affiliation:

1. Department of Newborn, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China

2. Department of General Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518000, China

3. Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 210000, China

4. Department of Pharmacy, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China

5. School of Life SNciences, Hefei Nomal University, Hefei, Anhui 230031, China

Abstract

Staphylococcus aureus (S. aureus) is a typical kind of symbiotic bacteria, which can cause human pneumonia, food poisoning, and other health problems. Nowadays, the corresponding prevention and treatment have been a hot issue of general concern in related research areas. However, the mechanism of action against S. aureus is not well understood. In order to tackle such problem, we used broth microdilution to discuss the antibacterial effect of 5-methyl-2-isopropylphenol and determine inhibitory concentration. In addition, membrane potential and lipid peroxidation levels were also measured under experimental conditions. The experimental results suggested that 300 μg/mL thymol might cause cell membrane damage and decrease of NADPH concentration and increase of NADP+ and lipid peroxidation level. In such condition, thymol has the potential to result in membrane rupture and disruption of cellular homeostasis. Furthermore, we also found that NOX2 is involved in maintaining the balance of NADPH/NADP+ in cells. Finally, our work confirms that NOX2 is a potential downstream target for thymol in the cell. Such target can provide specific guidance and recommendations for its application in antifungal activity. Meanwhile, our study also provides a new inspiration for the molecular mechanism of thymol’s bacteriostatic action.

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3