A Study on the Diffraction Correction Prediction of Electromagnetic Field Intensity Based on the Method of Estimating Aerial Access Network Signal

Author:

He Jialuan12,Xing Zirui2,Wang Qiang2,Wu Feihong2,Lu Fuyong3ORCID

Affiliation:

1. School of Mechanical Electronic & Information Engineering, China University of Mining & Technology, Beijing 10083, China

2. Beijing Aerocim Technology Co., Ltd., Beijing 102308, China

3. Academy of China Open Economy Studies, University of International Business and Economics, Beijing 10029, China

Abstract

Field strength is a typical indicator of air access network signals, and the prediction of field strength has important reference significance for the estimation of aerial access network signals. However, many factors affecting the field strength, such as path, terrain, sunshine, and climate, increase the computational complexity, which greatly increases the difficulty of establishing an accurate prediction system. After persistent research by researchers in recent years, the ITU-R P.1546 model has gradually become a point-to-surface forecasting method for ground services recommended by ITU for ground operations in the frequency range of 30 MHz~3000 MHz. In view of the characteristics of electromagnetic signal propagation in mountainous environment, the influence of diffraction is also considered in this paper. Based on more accurate scene information such as actual terrain, the prediction calculation of electromagnetic signal propagation in a mountainous environment is proposed by using the corrected ITU-R P.1546 model. In addition, the influence of the actual terrain is taken into account to correct the relevant parameters, and the predicted results are compared with the measured data. The results indicate that field strength prediction results of the ITU-R P.1546 model based on the diffraction effect correction proposed in this paper in specific physical areas have better performance than those of the traditional ITU-R P.1546 model. Among them, the determination coefficient between the measured data and the predicted results is 0.87, the average error is 5.097 dBμV/m, and the root mean square error is 6.6228 dBμV/m, which proves that the ITU-R P.1546 model based on the corrected model is effective in the prediction of electromagnetic field intensity in the actual mountainous environment.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on Signal Coverage Conditions in Complex Terrains Using ITU-R P.1546-5;2024 9th International Conference on Electronic Technology and Information Science (ICETIS);2024-05-17

2. Fast Coupling Iterative Algorithm for Media Rough Surface with Multiple Targets Below;The Applied Computational Electromagnetics Society Journal (ACES);2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3