Revealing the Mechanism of Astragali Radix against Cancer-Related Fatigue by Network Pharmacology and Molecular Docking

Author:

Xie Yi12ORCID,Zhou Kainan1ORCID,Wang Yan1ORCID,Yang Shuhan12ORCID,Liu Suying1ORCID,Wang Xueqian1ORCID,Zhang Ying1ORCID

Affiliation:

1. Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China

2. Beijing University of Chinese Medicine, Beijing 100029, China

Abstract

Background. Cancer-related fatigue (CRF) is an increasingly appreciated complication in cancer patients, which severely impairs their quality of life for a long time. Astragali Radix (AR) is a safe and effective treatment to improve CRF, but the related mechanistic studies are still limited. Objective. To systematically analyze the mechanism of AR against CRF by network pharmacology. Methods. TCMSP was searched to obtain the active compounds and targets of AR. The active compound-target (AC-T) network was established and exhibited by related visualization software. The GeneCards database was searched to acquire CRF targets, and the intersection targets with AR targets were used to make the Venny diagram. The protein-protein interaction (PPI) network of intersection targets was established, and further, the therapeutic core targets were selected by topological parameters. The selected core targets were uploaded to Metascape for GO and KEGG analysis. Finally, AutoDock Vina and PyMOL were employed for molecular docking validation. Results. 16 active compounds of AR were obtained, such as quercetin, kaempferol, 7-O-methylisomucronulatol, formononetin, and isorhamnetin. 57 core targets were screened, such as AKT1, TP53, VEGFA, IL-6, and CASP3. KEGG analysis manifested that the core targets acted on various pathways, including 137 pathways such as TNF, IL-17, and the AGE-RAGE signaling pathway. Molecular docking demonstrated that active compounds docked well with the core targets. Conclusion. The mechanism of AR in treating CRF involves multiple targets and multiple pathways. The present study laid a theoretical foundation for the subsequent research and clinical application of AR and its extracts against CRF.

Funder

Beijing Natural Science Foundation

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3