A Novel Robust Grey Model for Forecasting Chinese Electricity Demand

Author:

Yao Riquan1,Jin Shaojun2,Wei Cong3,Kong Jiayang456ORCID

Affiliation:

1. Huzhou Power Supply Company of State Grid Zhejiang Electric Power Co, Ltd, Huzhou, China

2. State Grid Zhejiang Electric Power Co, Ltd, Hangzhou, China

3. School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China

4. School of Economics and Business Administration, Central China Normal University, Wuhan, China

5. School of Mathematics and Statistics, Central China Normal University, Wuhan, China

6. School of Business and Economics, Maastricht University, Maastricht, Netherlands

Abstract

The grey model, which is abbreviated as GM (1, 1), has been widely applied in the fields of decision and prediction, particularly in the prediction of time series with few observations, referred to as the poor information and small sample in the literature related to grey model. Previous studies focus on improving the accuracy of prediction but pay less attention to the robustness of the grey model to outliers, which often occur in practice due to an incorrect record by chance or an accidental failure in equipment. To fill that void, we develop a robust grey model, whose structural parameters are obtained from the least trim squares, to forecast Chinese electricity demand. Also, we use the last value in the first-order accumulative generating time series as the initial value, according to the new information priority criterion. We name the novel grey model, proposed in this paper, the novel robust grey model integrating the new information priority criterion, which could be abbreviated as NIPC-GM (1, 1). In addition, we introduce a novel approach, that is, the bootstrapping test, to investigate the robustness against outliers for the novel robust grey model and the classical grey model, respectively. Using the data on Chinese electricity demand from 2011 to 2021, we find that not only does the novel robust grey model integrating the new information priority criterion have a better robustness to outliers than the classical grey model, but it also has a higher accuracy of prediction than the classical grey model. Finally, we apply the novel robust grey model integrating the new information priority criterion to forecasting the future values in Chinese electricity demand during the period 2022 to 2025. We see that Chinese electricity demand would continue to rise in the next four years.

Funder

Science and Technology Project of State Grid Corporation of China

Publisher

Hindawi Limited

Subject

Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3