Soil Degradation-Induced Decline in Productivity of Sub-Saharan African Soils: The Prospects of Looking Downwards the Lowlands with theSawahEcotechnology

Author:

Obalum Sunday E.12,Buri Mohammed M.3,Nwite John C.4,Hermansah 5,Watanabe Yoshinori1,Igwe Charles A.12,Wakatsuki Toshiyuki1

Affiliation:

1. School of Agriculture, Kinki University, Nara 631-8505, Japan

2. Department of Soil Science, University of Nigeria, Nsukka 410001, Nigeria

3. CSIR—Soil Research Institute, Academy Post Office, Kwadaso, Kumasi, Ghana

4. Department of Crop Production Technology, Federal College of Agriculture, P.M.B. 7008, Ishiagu, Nigeria

5. Department of Soil Science, Faculty of Agriculture, Andalas University, Limau Manis, Padang 25163, Indonesia

Abstract

The paper provides an insight into the problem of land degradation in Sub-Saharan Africa, with emphasis on soil erosion and its effect on soil quality and productivity, and proposes a lowland-based rice-production technology for coping with the situation. Crop yields are, in addition to the degree of past and current erosion, determined by a number of interacting variables. This, coupled with the generally weak database on erosion-induced losses in crop yield in spite of the region’s high vulnerability to erosion, makes it difficult to attain a reliable inference on the cause-effect relationship between soil loss and productivity. Available data suggest, however, that the region is at risk of not meeting up with the challenges of agriculture in this 21st century. Based on the few studies reviewed, methodology appears to have an overwhelming influence on the erosion-productivity response, whereas issues bordering on physical environment and soil affect the shape of the response curve. We argue that thesawahecotechnology has the potential of countering the negative agronomic and environmental impacts of land degradation in Sub-Saharan Africa. This is a farmer-oriented, low-cost system of managing soil, water, and nutrient resources for enhancing lowland rice productivity and realizing Green Revolution in the region.

Funder

Ministry of Education, Culture, Sports, Science, and Technology

Publisher

Hindawi Limited

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3