College English Teaching Quality Evaluation System Based on Information Fusion and Optimized RBF Neural Network Decision Algorithm

Author:

Chen Yajun1ORCID

Affiliation:

1. School of Humanities, Social Sciences and Foreign Languages, Baotou Medical College, Baotou, 014040 Inner Mongolia, China

Abstract

In the process of deepening and developing the current higher education reform, people pay more and more attention to the research of college English education. The key to improve the college English education is to improve the quality of education, and learning evaluation is the key measure to improve the quality of education and training. This paper mainly studies the college English teaching quality evaluation system based on information fusion and optimized RBF neural network decision algorithm. This paper analyzes the main problems and complexity of creating an ideal learning quality evaluation system. On the basis of analyzing the advantages and disadvantages of the previous learning quality evaluation methods, this paper summarizes the existing learning quality evaluation methods and puts forward some suggestions according to the existing evaluation methods. A learning quality evaluation model based on RBF algorithm of neural network is proposed. RBF regularization network method, RBF neural network decision algorithm, and experimental investigation method are used to study the college English teaching quality evaluation system based on information fusion and optimization of RBF neural network decision algorithm. By innovating teaching methods and enriching teaching means, college students’ thirst for English knowledge can be aroused, and teachers’ teaching level can be improved. The results show that 50% of college students think that the level of college English teaching is average and needs to be improved. In the performance evaluation system of college English teaching quality based on information fusion and optimized RBF neural network decision algorithm, it is necessary to establish a learning evaluation system, monitor the learning quality in real time, find problems and improve them in time, and recognize the current situation of education.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The analysis of teaching quality evaluation for the college sports dance by convolutional neural network model and deep learning;Heliyon;2024-08

2. Genetically optimized neural network for college English teaching evaluation method;Education and Information Technologies;2024-05-10

3. The Importance of Early Detection and Risk Assessment for Chronic Disease Based on IF-ORBF-DA Approach;2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC);2024-05-02

4. Construction and Implementation of Application-Oriented Undergraduate Teaching and Teaching Evaluation System Based on Multiple Information Fusion;International Journal of Web-Based Learning and Teaching Technologies;2024-02-20

5. An evaluation method of online education reform effect based on fuzzy weight;International Journal of Continuing Engineering Education and Life-Long Learning;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3