Analysis of the Refrigeration Performance of the Refrigerated Warehouse with Ice Thermal Energy Storage Driven Directly by Variable Photovoltaic Capacity

Author:

Liang Junyu1ORCID,Du Wenping23ORCID,Wang Dada1ORCID,Yuan Xingyu1ORCID,Liu Mei4ORCID,Niu Kunhao4ORCID

Affiliation:

1. Electric Power Research Institute of Yunnan Power Grid Co., Ltd, Kunming 650217, China

2. Chuxiong Normal University, Chuxiong 675000, China

3. School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, China

4. Qujing Bureau, EHV Power Transmission Company of CSG, Qujing 655000, China

Abstract

An independent solar photovoltaic (PV) refrigerated warehouse system with ice thermal energy storage is constructed in this paper. In this system, the vapour compression refrigeration cycle is directly driven by a PV array, and the frequency of the compressor varies with the solar radiation intensity. The refrigeration performance and the matching characteristics of the system driven by different PV capacities are studied. The results show that the intensity of solar radiation required for the compressor to work at the same frequency decreases by approximately 7.8% when the ratio of PV capacity to compressor-rated power increases by 10%, and the time required for the temperature in the refrigerated warehouse to drop from ambient temperature to 0°C is reduced by 32 min on average. The energy efficiency ratio of the vapour compression refrigeration subsystem and the coefficient of performance (COP) of the refrigerated warehouse system increase with the ratio of PV capacity to compressor-rated power α. When α increases from 1 to 1.3, the growth rate of the COP is very slow. For the PV direct-drive refrigerated warehouse system with a compressor-rated power of 4.4 kW, the suitable ratio of PV capacity to compressor-rated power α is about 1.3. When the refrigerated warehouse system is driven directly by a 5.4 kW PV array, the overall COP is approximately 0.19. In the cycle mode of refrigeration and cold energy storage during the day and cold energy release at night, the stored cold energy can still meet the refrigeration required by the load for 48 hours after eight days of continuous operation. According to the current market price of cold storage, during the service life of the system, the income per unit volume of cold storage is about 2.2 times the investment.

Funder

Yunnan Power Grid Corporation Science and Technology Project

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance analysis of a solar-driven domestic refrigerator working with eco-friendly refrigerants in continuous power outage areas;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2023-09-18

2. Setup, Start-Up and Data Analysis of a Multi-Compressor Control System for Cold Storage Refrigeration;2023 9th International Conference on Control, Decision and Information Technologies (CoDIT);2023-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3