N-Acetylcysteine Decreases Myocardial Content of Inflammatory Mediators Preventing the Development of Inflammation State and Oxidative Stress in Rats Subjected to a High-Fat Diet

Author:

Sztolsztener Klaudia1ORCID,Bzdęga Wiktor1,Hodun Katarzyna1,Chabowski Adrian1ORCID

Affiliation:

1. Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland

Abstract

Arachidonic acid (AA) is a key precursor for proinflammatory and anti-inflammatory derivatives that regulate the inflammatory response. The modulation of AA metabolism is a target for searching a therapeutic agent with potent anti-inflammatory action in cardiovascular disorders. Therefore, our study aims to determine the potential preventive impact of N-acetylcysteine (NAC) supplementation on myocardial inflammation and the occurrence of oxidative stress in obesity induced by high-fat feeding. The experiment was conducted for eight weeks on male Wistar rats fed a standard chow or a high-fat diet (HFD) with intragastric NAC supplementation. The Gas-Liquid Chromatography (GLC) method was used to quantify the plasma and myocardial AA levels in the selected lipid fraction. The expression of proteins included in the inflammation pathway was measured by the Western blot technique. The concentrations of arachidonic acid derivatives, cytokines and chemokines, and oxidative stress parameters were determined by the ELISA, colorimetric, and multiplex immunoassay kits. We established that in the left ventricle tissue NAC reduced AA concentration, especially in the phospholipid fraction. NAC administration ameliorated the COX-2 and 5-LOX expression, leading to a decrease in the PGE2 and LTC4 contents, respectively, and augmented the 12/15-LOX expression, increasing the LXA4 content. In obese rats, NAC ameliorated NF-κB expression, inhibiting the secretion of proinflammatory cytokines. NAC also affected the antioxidant levels in HFD rats through an increase in GSH and CAT contents with a simultaneous decrease in the levels of 4-HNE and MDA. We concluded that NAC treatment weakens the NF-κB signaling pathway, limiting the development of myocardial low-grade inflammation, and increasing the antioxidant content that may protect against the development of oxidative stress in rats with obesity induced by an HFD.

Funder

Uniwersytet Medyczny w Bialymstoku

Publisher

Hindawi Limited

Subject

Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3