Pressure Transient Analysis for a Horizontal Well in Heterogeneous Carbonate Reservoirs Using a Linear Composite Model

Author:

Duan Yong-Gang1ORCID,Ren Ke-Yi1ORCID,Fang Quan-Tang1,Wei Ming-Qiang1ORCID,Dejam Morteza2,Chen Wei-Hua3

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China

2. Department of Petroleum Engineering, College of Engineering and Applied Science, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071-2000, USA

3. Engineering Technology Research Institute, Petro China Southwest Oil & Gasfield Company, Chengdu 610031, Sichuan, China

Abstract

Carbonate reservoirs usually have strong anisotropy. Oil and gas recovery from fractured reservoirs is highly challenging due to complicated mechanisms involved in production from these reservoirs. A horizontal well completed in these reservoirs may extend through multiple zones, including homogeneous, dual-porosity, and triple-porosity formations. Traditional well test models assume that the entire length of a horizontal or multilateral well remains in the same formation with uniform properties. A well test model for pressure transient analysis of horizontal wells extending through a carbonate reservoir consisting of natural fractures, rock matrix, and vugs with different properties is presented in this study. The focus of this study is on dual-porosity (fracture-matrix) and triple-porosity (fracture-matrix-vug) reservoirs, considering the pseudosteady interporosity flows from rock matrix and vugs into fractures. A multizone triple-porosity model was established and solved by using the point source function, Green’s function, and coupling of multiple reservoir sections. The corresponding type curves were developed, and sensitivity analysis was carried out. The type curves of flow stage division reveal that a horizontal well traversing a three-section reservoir including homogeneous, dual-porosity (fracture-matrix)/triple-porosity (fracture-vug-matrix), and homogeneous sections identifies the stages of pseudosteady interporosity flow from matrix and vug into fracture, fracture pseudoradial flow, system linear flow, system pseudoradial flow, and pseudosteady flow occur in sequence. The greater the difference of permeability between the dual-porosity/triple-porosity section and the two homogeneous sections, the more obvious the interporosity flow on the pressure derivative curve. This approach satisfies the need for pressure transient analysis for a horizontal well that traverses two or more regions with distinct properties in heterogeneous carbonate reservoirs.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3