Inhaling Hydrogen Ameliorates Early Postresuscitation EEG Characteristics in an Asphyxial Cardiac Arrest Rat Model

Author:

Chen Gang12ORCID,Li Jingru1ORCID,Wang Jianjie1ORCID,Chen Bihua1ORCID,Li Yongqin1ORCID

Affiliation:

1. Department of Biomedical Engineering, Army Medical University, Chongqing 400038, China

2. The Centre for Disease Control and Prevention of Southern War Zone, Yunnan Province, Kunming 650000, China

Abstract

Background. Electroencephalography (EEG) is commonly used to assess the neurological prognosis of comatose patients after cardiac arrest (CA). However, the early prognostic accuracy of EEG may be affected by postresuscitation interventions. Recent animal studies found that hydrogen inhalation after CA greatly improved neurological outcomes by selectively neutralizing highly reactive oxidants, but the effect of hydrogen inhalation on EEG recovery and its prognostication value are still unclear. The present study investigated the effects of hydrogen inhalation on early postresuscitation EEG characteristics in an asphyxial CA rat model. Methods. Cardiopulmonary resuscitation was initiated after 5 min of untreated CA in 40 adult female Sprague-Dawley rats. Animals were randomized for ventilation with 98% oxygen plus 2% hydrogen (H2) or 98% oxygen plus 2% nitrogen (Ctrl) under normothermia for 1 h. EEG characteristics were continuously recorded for 4 h, and the relationships between quantitative EEG characteristics and 96 h neurological outcomes were investigated. Results. No differences in baseline and resuscitation data were observed between groups, but the survival rate was significantly higher in the H2 group than in the Ctrl group (90% vs. 40%, P<0.01). Compared to the Ctrl group, the H2 group showed a shorter burst onset time (21.85 [20.00–23.38] vs. 25.70 [22.48–30.05], P<0.01) and time to normal trace (169.83 [161.63–208.55] vs. 208.39 [186.29–248.80], P<0.01). Additionally, the burst suppression ratio (0.66 ± 0.09 vs. 0.52 ± 0.17, P<0.01) and weighted‐permutation entropy (0.47 ± 0.16 vs. 0.34 ± 0.13, P<0.01) were markedly higher in the H2 group. The areas under the receiver operating characteristic curves for the 4 EEG characteristics in predicting survival were 0.82, 0.84, 0.88, and 0.83, respectively. Conclusions. In this asphyxial CA rat model, the improved postresuscitation EEG characteristics for animals treated with hydrogen are correlated with the better 96 h neurological outcome and predicted survival.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3